
International Journal of Theoretical Physics, Vol. 45, No. 8, August 2006 ( C© 2006)
DOI: 10.1007/s10773-006-9136-x
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When 4-dimensional general relativity is extended by a 3-dimensional gravitational
Chern–Simons term an apparent violation of diffeormorphism invariance is extin-
guished by the dynamical equations of motion for the modified theory. The physical
predictions of this recently proposed model show little evidence of symmetry breaking,
but require the vanishing of the Pontryagin density.
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1. INTRODUCTION

Chern–Simons terms are odd-dimensional entities, interesting to mathemati-
cians (Chern, 1979) and physicists (Deser et al., 1982, 1988). For physicists
they are most useful when they are defined on 3-manifolds, and over the last
twenty years they have been widely used to model various physical processes in
3-dimensional space-time, that is, phenomena confined to motion on a plane, like
the Hall effect, or gravitational motion in the presence of cosmic strings.

However, these 3-dimensional structures can also be inserted into physical
theories in 4-dimensional space-time, and because of the dimensional mismatch
this gives rise to kinematical and dynamical violation of Lorentz symmetry, CPT
symmetry, etc.

As you have heard earlier in this meeting from Kostelecky, the subject of
Lorentz and CPT symmetry violation is interesting these days, mainly due to his
initiating and stimulating work by theorists and experimentalists. The former build
plausible extensions of standard theories, with small symmetry-breaking terms;
the latter perform more and more precise experiments limiting the magnitude of
such possible terms. Thus far, no evidence for symmetry breaking has been found;
indeed, conventional symmetries are confirmed, with ever-decreasing uncertainty.
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Today, I shall describe a Chern–Simons modification of 4-dimensional gravity
theory—Einstein’s general relativity—and the associated decrease in symmetry.

Actually, more than a decade ago, George Field, Sean Carroll and I inves-
tigated a Chern–Simons modification of Maxwell’s electromagnetic theory. So
in order to set the stage for the gravitational extension, I shall first review the
Maxwell story (Carroll et al., 1990).

2. CHERN–SIMONS MODIFICATION OF MAXWELL THEORY

The Chern–Simons term for an Abelian gauge theory on an Euclidean 3-space
reads

CS(A) ≡ 1

4
εijkFijAk = 1

2
A · B. (2.1)

The first expression is in tensor notation; the second in vector notation, with B
being the magnetic field, B = ∇ × A. All indices are spatial [i, j, k : x, y, z]. A
related 4-dimensional formula in Minkowski space-time defines the topological
Chern–Simons current

Kµ = ∗FµνAν, (2.2)

where ∗Fµν is the dual electromagnetic tensor.

∗Fµν = 1

2
εµναβFαβ (2.3)

It is seen that the Chern–Simons term (2.1) is proportional to the time t(µ = 0)
component of the Chern–Simons current, (2.2) with the time dependence sup-
pressed. Also the divergence of the topological current is the topological Pontrya-
gin density.

∂µKµ = ∂µ(∗FµνAν) = 1

2
∗FµνFµν (2.4)

In Chern–Simons modified electromagnetism the Chern–Simons term (2.1) (with
field arguments extended to include t) is added to the usual Maxwell Lagrangian.

I =
∫

d4x

(
−1

4
Fµν Fµν + µ

2
A · B

)
(2.5)

Here µ, with dimension of mass, measures the strength of the extension. Formula
(2.5) may be alternatively presented in covariant notation, with the help of an
external, constant embedding 4-vector vµ.

I =
∫

d4x

(
−1

4
FµνFµν + 1

2
vµ

∗Fµν
Aν

)

vµ = (µ, 0) (2.6)
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In spite of the presence of the vector potential, the action is gauge invariant: Under
a gauge transformation it changes by a surface term, since ∂µ

∗Fµν = 0. This
can be made explicit by recognizing that in (2.6) there occurs the Chern–Simons
current Kµ (2.2). Therefore, with the help of (2.4) and an integration by parts the
action acquires a gauge invariant form.

I =
∫

d4x

(
−1

4
FµνFµν + 1

4
θ∗FµνFµν

)

∂µθ ≡ vµ (2.7)

The external quantity is now θ , which is taken as θ = µt so that (2.5) and (2.6)
are reproduced.

Since the explicitly covariant formulations (2.6) and (2.7) involve external,
fixed quantities [a fixed constant embedding vector vµ in (2.6); a fixed function
θ , linear in time, in (2.7)], we expect that Lorentz invariance is lost. Also, since
A · B, and ∗FµνFµν are axial quantities, parity is lost; but C and T are preserved,
so CPT is also lost. To confirm these statements, we now look to the solutions of
the modified equations of motion.

In the electromagnetic equations of motion, which follow from the Chern–
Simons extended action, only Ampère’s law is modified.

−∂E
∂t

+ ∇× B = J + µB (2.8)

All other Maxwell equations continue to hold. Also the consistency condition on
(2.8) remains as in Maxwell theory: the charge density ρ = ∇ · E and the current
J must satisfy their continuity equation, as is seen by taking the divergence of
(2.8) and using ∇ · B = 0.

The modification that we have constructed is particularly felicitous for the
following reasons.

1. (i) Gauge invariance is maintained, so the photon continues to possess just
two independent polarizations.

2. (ii) Eq. (2.8) is not a radical departure; it has played previous roles in
physical theory: in plasma physics one frequently replaces the source
current J with a magnetic field B. Of course, we are not working with
a collective/phenomenological theory, like plasma physics, rather we are
examining the feasibility of (2.8) for fundamental physics.

To assess the actual physical content of the Chern–Simons extended elec-
tromagnetism, and its associated symmetry breaking, we have examined some
solutions. We found that in the source-free (J = 0) case, plane waves continue to
solve the extended equations. The photon posseses two independent polarizations,
(as anticipated from gauge invariance) however they travel at velocities which



1434 Jackiw

differ from the velocity of light (thus Lorentz boost invariance is lost—as antic-
ipated) and also the two polarizations travel with velocities that differ from each
other (thus parity invariance is lost–as anticipated).

The fact that the two photon helicities travel (in vacuum) with different
velocities makes empty space behave as a birefringent medium. Consequently
linearly polarized light, passing through this birefringent environment, undergoes
a Faraday-like rotation, which can be looked for in observations of light from
distant galaxies. Much data exists on this phenomenon, and the conclusion is
unavoidable: there is no such effect in Nature; µ = 0 is required. This was asserted
in our initial investigations (Carroll et al., 1990; Carroll and Field, 1997), and the
many other analyses carried out in the intervening years support that conclusion
(see e.g. Goldhaber and Trimble, 1996; Jacobson et al., 2004).

3. CHERN–SIMONS MODIFICATION OF EINSTEIN THEORY

3.1. Gravitational Chern–Simons Term in 3-space

The 3-dimensional, gravitational Chern–Simons term can be presented in
terms of the 3-dimensional Christoffel connection 3�

p

iq (Deser et al., 1982, 1988)

CS(�) = εijk

(
1

2
3�

p

iq ∂j
3�

q

kp + 1

3
3�

p

iq
3�

q

jr
3�r

kp

)
, (3.1)

but it is understood that the Christoffel connection takes the usual expression
in terms of the metric tensor, which is the fundamental variable. Variation with
respect to the metric tensor of the intergrated Chern–Simons term results in the 3-
dimensional “Cotton tensor”; which involves a covariant curl of the 3-dimensional
Ricci tensor 3Ri

j .

δ

δgij

∫
d3xCS(�) = −√

g 3Cij = 1

2
εimn 3Dm

3Rj
n + i ↔ j (3.2)

3Cij is symmetric, traceless and covariantly conserved. It vanishes if and only if
the 3-dimensional metric tensor is conformally flat. A related formula gives the
4-dimensional Chern–Simons current Kµ,

Kµ = 2εµαβγ

[
1

2
�σ

ατ ∂β �τ
γσ + 1

3
�σ

ατ �τ
βη�

η
γσ

]
, (3.3)

whose divergence is the topological Pontryagin density.

∂µKµ = 1

2
∗Rσ

τ
µν Rτ

σµν ≡ 1

2
∗RR (3.4)
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Here Rτ
σµν is the Riemann curvature tensor and ∗Rσ

τ
µν is its dual.

∗Rσ µν
τ = 1

2
εµναβRσ

ταβ (3.5)

[Notation: (i, j, . . .) are 3-dimensional, spatial indices, and 3-dimensional ge-
ometric entities are decorated with the superscript “3.” Undecorated geometric
entities are 4-dimensional, and Greek indices label the 4 space-time coordinates.]
Note that unlike in the vector case, the Chern–Simons term (3.1) is not the time
component K0, because the former contains 3-dimensional Christoffel entities,
while 4-dimensional ones are present in K0. This variety allows various exten-
sions general relativity.

3.2. Gravitational Chern–Simons Term in 4-space.

In analogy with the electromagnetic formulation (2.7), we choose to extend
Einstein theory by adopting the action (Jackiw and Pi, 1999; Lue et al., 1999)

I = 1

16πG

∫
d4x

(√−gR + 1

4
θ∗RR

)

= 1

16πG

∫
d4x

(√−gR − 1

2
vµKµ

)
, vµ ≡ ∂µθ. (3.6)

The first contribution is the usual Einstein–Hilbert term involving the Ricci scalar
R. The modification involves an external quantity: θ in the first equality; ∂µθ ≡ vµ

in the second equality, which follows from the first by (3.4) and an integration
by parts. Eventually we shall take the embedding vector vµ to possess only a
time component, and θ to depend solely on time. So then our modification (3.6)
involves the time component of 4-dimensional Chern–Simons current (3.3) [rather
than the 3-dimensional Chern–Simons term (3.1)].

The equation of motion that emerges when (3.6) is varied with respect to gµν

is

Gµν + Cµν = −8πGT µν. (3.7)

Here Gµν is the covariantly conserved (Bianchi identity) Einstein tensor, Gµν =
Rµν − 1

2gµνR. We have inserted a source with strength G (Newtons constant)
consisting of the matter energy-momentum tensor T µν , which also is convariantly
conserved, since we assume matter to be conventionally, covariantly coupled to
gravity. Cµν is the term with which we are extending the Einstein theory.

√−gCµν = δ

δgµν

1

4

∫
d4xθ∗RR

= −1

2

(
vσ εσµαβDαRν

β + vστ
∗Rτµσν + µ ↔ ν

)
(3.8)
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Cµν is manifestly symmetric; it is traceless because ∗RR is conformably invariant.
Cµν’s first term (involving the curl of Rν

β) is similar to the 3-dimensional
√

g3Cij

(3.2). Even the second term can be viewed as a generalization from 3-dimensions:
it involves only the Weyl tensor part of Riemann tensor, which vanishes in 3
dimensions. [Cotton defined his tensor in arbitrary dimensions d, and his definition
is equivalent to ours in d = 3, where it is also given by the variation of the 3-d
gravitational Chern–Simons term, as is (3.2) (Garcia et al., 2004). However for
d �= 3, Cotton’s tensor does not appear to have a variational definition. Our d = 4
Cotton-like tensor in (3.8) does possess a variational definition, at the the expense
of introducing non-geometrical entities like θ and vµ.]

Finally we must examine DµCµν , whose vanishing is a consistency require-
ment on (3.7). However, an explicit evaluation (which involves only geometric
identities) shows that, unlike in 3 dimensions, Cµν is not covariantly conserved.
Rather

DµCµν = 1

8
√−g

vν∗RR. (3.9)

Thus the vanishing of ∗RR is a consistency condition of the new dynamics: every
solution to (3.7) will necessarily lead to vanishing Pontryagin density.

Gµν + Cµν = −8πGT µν ⇒ ∗RR = 0 (3.10)

We may derive and understand the expression for the covariant divergence
of Cµν by examining the response of our addition to changes in the coordinates.
With the infinitesimal transformation

δxµ = −f µ(x) (3.11)

we have

δgµν = Dµfν + Dνfµ. (3.12)

The Hilbert Einstein action is of course invariant. To assess the variance properties
of our modification, we can proceed in two ways. First observe that ∗RR is
scalar density, so it transforms as δ(∗RR) = ∂µ(f µ∗RR). θ is an external quantity,
therefore we do not transform it.

δICS = 1

4

∫
d4x θδ(∗RR) = 1

4

∫
d4xθ∂µ(f µ∗RR)

= −1

4

∫
d4xvµf µ∗RR (3.13a)
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Alternatively, we may vary ICS , by varying gµν according to (3.10) , and using the
definition (3.8) for Cµν .

δICS =
∫

d4y
δ

δgµν(y)

(
1

4

∫
d4x θ ∗RR

)
2Dµfν(y)

= 2
∫

d4x
√−g CµνDµfµ = −2

∫
d4x

√−g (DµCµν)fν (3.13b)

Equating the two expressions for δICS establishes (3.9), and also demonstrates that
∗RR is a measure of the failure of diffeomorphism invariance. But ∗RR vanishes
as a consequence of the equation of motion, so is some sense diffeomorphism
invariance is dynamically reinstated.

For another perspective, consider a variant of our model, where θ in (3.6) is
a dynamical variable, not an externally fixed quantity. If we postulate that under
diffeomorphisms (3.11) θ transforms as a scalar,

δθ = f µ∂µθ = f µvµ, (3.14)

then (3.13a) acquires the additional contribution

1

4

∫
d4x δθ (∗RR) = 1

4

∫
d4x vµ f µ ∗RR, (3.15)

which cancels (3.13a), showing that the Chern–Simons modification with dynam-
ical θ is diffeomorphism invariant. Now let us look at the equations of motion in
this variant of modified gravity: varying gµν still produces (3.7); varying θ , which
now acts as a Lagrange multiplier, forces ∗RR to vanish, but that requirement is
already implied by (3.7) and (3.10). Thus the equations of the fully dynamical, and
diffeomorphism invariant theory coincide with the equations of the non-invariant
theory, where θ is a fixed, external quantity. Another point of view about the fully
dynamical scenario (θ a dynamical field) is that setting θ equal to t/µ is just a
coordinate choice in a fully diffeomorphism invariant theory.

Formula (3.13a) shows that when vµ is chosen to have only a time
component, vµ = ( 1

µ
, 0); equivalently θ = t/µ, then ICS is invariant under all

space-time reparametrizations of the spatial coordinates, and also of shifts in
time: f 0 = constant, f iarbitrary. Henceforth we make this choice for vµ and θ .

3.3. Physical Effects of the Chern–Simons Term in 4-d Gravity

We examine some physical processes in the Chern-Simon modified gravity
theory.

1. (i) It is important that the Schwarzschild solution continues to hold; thus
our theory passes the “classic” test of general relativity. The result is
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established in two steps. First we posit a stationary form for the metric
tensor

gµν =
(

N 0
0 gij

)
, (3.16)

with time-independent entries. It follows that C00 and Cn0 = C0n vanish.
Also one finds that the spatial components reproduce the 3-dimensional
Cotton tensor.

√−g Cij = √
g

3
Cij (3.17)

Next, we make the spherically symmetric Ansatz, and find that Cij van-
ishes. Evidently also ∗RR must vanish on the Schwarzschild geometry,
because the modified equations are satisfied. Since the Kerr geometry,
carries non vanishing ∗RR, it will not be a solution to the extended equa-
tions. It remains an interesting, open question which deformation of the
Kerr geometry satisfies the Chern–Simons modified equations.

2. (ii) Next we perform a linear analysis by expanding the metric tensor
around a flat background gµν = ηµν + hµν . The purpose of the linear
analysis is to determine the propagating degrees of freedom, to study
the nature of small disturbances (gravity waves) and to illuminate the
construction of an energy-momentum (pseudo) tensor, which is symmetric
and divergence-free.

Keeping only the linear portions of the Einstein tensor and Cµν , we
verify that both Glinear

µν and Clinear
µν are divergence-free.

∂µGlinear
µν = 0 = ∂µClinear

µν (3.18)

This is seen from the explicit formulas. It also follows from the observation
that the exact equation DµGµν = 0 implies the above result for Glinear

µν ;
moreover, from (3.9) we see that DµCµν is of quadratic order, hence the
above result for Clinear

µν holds also. It is further seen that the linear portions
are invariant under the “gauge" transformation

hµν → hµν + ∂µλν + ∂νλµ (3.19)

In the Einstein theory, one decomposes hµν into temporal parts, and purely spatial
parts hij . The latter is further decomposed into its trace, its longitudinal part, and its
traceless transverse part, denoted by h

ij

T T . One then finds from the linear equations
that, with the exception of h

ij

T T , all other components of hµν are either non-
propagating or can be eliminated by the gauge transformation (3.19). Only h

ij

T T

survives and it is governed by a d’Alembertian. Since in 4 dimensions a symmetric,
transverse and traceless 3 × 3 matrix possesses two independent components, one
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concludes that in Einstein’s theory small gravitational disturbances are waves,
with two polarizations, each moving with the velocity of light (governed by the
d’Alembertian).

None of this changes where Clinear
µν is included. Again only h

ij

T T propagates,

governed by the d’Alembertian. Explicitly the modified equation for h
ij

T T reads(
δimδjn + 1

2µ
εipm δnj ∂p + 1

2µ
εjpmδni∂p

)
� hmn

T T

= −16π G T
ij

T T . (3.20)

T
ij

T T is the transverse traceless part of the stress tensor. The new terms are the
(µ−1) contributions; they involve only spatial derivatives. One may consider that
the left side of (3.20) involves an operator acting on � hmn

T T .

Oij
mn� hmn

T T = −16πG T
ij

T T (3.21a)

Acting on this equation with the inverse operator P = O−1 shows that the effect
of the entire extension is to modify the source

� hmn
T T = −16πG Pmn

ij T
ij

T T

≡ −16πG T̃
ij

T T (3.21b)

Thus we see that in sharp contrast to the electromagnetic case, the Chern–
Simons modification of gravity does not change the velocity of gravity waves and
there is no Faraday rotation. It is also noteworthy that the reduction to 2 degrees of
freedom (2 polarizations) takes place also in the extended theory. Such a reduction
of degrees of freedom is considered to be a consequence of gauge invariance, here
diffeomorphism invariance, which evidently continues to hold on our modified
theory.

There does exist a physical manifestation of the extension. Although the
velocities of the two polarizations are the same, their intensities differ, due to
the modification of the source (T ij

T T → T̃
ij

T T ). One finds for a weak modification
(large µ) that the ratio of the intensity of waves with negative helicity to those
with positive helicity is

−
+ =

(
1 + 4ω

µ

)
, (3.22)

where ω is the frequency. This puts into evidence the parity violation of the
modification.

Finally we turn to the topic of the energy-momentum (pseudo) tensor. A
straight forward approach to this problem in the Einstein theory is to rewrite the
equation of motion by decomposing the Einstein tensor Gµν into its linear and
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non-linear parts, and moving the non-linear terms to the “right” side, summing it
with the matter energy-momentum tensor.

Glinear
µν = −8π G

(
Tµν + 1

8πG
Gnon−linear

µν

)
(3.23)

Clearly Glinear
µν is symmetric and conserved, therefore, so must be the right side,

which is now renamed as total (gravity + matter) energy-momentum (pseudo)
tensor.

τµν = Tµν + 1

8πG
Gnon−linear

µν (3.24)

Exactly the same procedure works in the extended theory. We present the
equation of motion (3.7) as

Glinear
µν + Clinear

µν = −8π G

(
Tµν + 1

8πG

(
Gnon−linear

µν + Cnon−linear
µν

))
. (3.25)

We have already remarked that the left side is divergenceless. Thus we can identify
a symmetric and conserved energy- momentum (pseudo) tensor as

τµν = Tµν + 1

8πG

(
Gnon−linear

µν + Cnon−linear
µν

)
. (3.26)

It is striking that this structure is present in a theory that seems to violate Lorentz
invariance!

In Ref. Bak et al. (1994) there is a survey of other gravitational energy-
momentum (pseudo) tensors for Einstein’s theory that differ from each other
by super potentials. In particular there is described a Noether construction with
a Belinfante improvement, which also yields a symmetric, conserved energy-
momentum (pseudo) tensor tied to the Poincaré invariance of the Einstein theory.
It would be interesting to reconsider this construction in the extended theory and
to compare the result to (3.26).

4. CONCLUSION

Measuring the intensity of polarized gravity waves is not feasible. Thus for
present days, our model is only a theoretical exercise. Nevertheless, it shows inter-
esting and unexpected behavior in that an important symmetry–diffeomorphism
invariance–is not present in the action, but is restored by the equations of motion.
Correspondingly the physical effects of the symmetry breaking are quite hidden.

An analogy can be made with the Stückelberg formalism for massive, Abelian
gauge fields. The action

Im =
∫

d4x

(
−1

4
FµνFµν + 1

2
m2AµAµ

)
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is not gauge invariant

δgauge Im =
∫

m2Aµ∂µλ = −
∫

m2∂µAµλ,

but is seen to be broken by ∂µAµ. However, the equation of motion

∂µFµν + m2Aν = J ν

has as a consequence (for conserved matter currents) ∂νA
ν = 0, and the equation

may be presented in gauge invariant form.

∂µFµν + m2

(
gµν − ∂µ∂ν

�

)
Aµ = J ν

But an important difference remains. If the the mass is promoted to a field,
m2 → m2(x), and this field is varied, then the resulting equation AµAµ = 0, is
not consequent to the original equation of motion. Indeed it is an unacceptable
equation, because it prevents finding non trivial solutions.

One recognizes the Higgs mechanism, in unitary gauge, as providing a kinetic
term and a potential for the field “m2(x),” so that its equation of motion becomes
dynamically acceptable. Moreover, one need not view the Higgs mechanism as
an instance of symmetry breaking; rather one may view it as a choice of gauge
(unitary gauge). This is similar to the situation in our fully dynamical (fully
diffeomorphism invariant) model, as stated at the end of Section 2B.
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